If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-7=40
We move all terms to the left:
3x^2-7-(40)=0
We add all the numbers together, and all the variables
3x^2-47=0
a = 3; b = 0; c = -47;
Δ = b2-4ac
Δ = 02-4·3·(-47)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{141}}{2*3}=\frac{0-2\sqrt{141}}{6} =-\frac{2\sqrt{141}}{6} =-\frac{\sqrt{141}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{141}}{2*3}=\frac{0+2\sqrt{141}}{6} =\frac{2\sqrt{141}}{6} =\frac{\sqrt{141}}{3} $
| 8.6w+2.2(2w+5)=54 | | (x-25)=3 | | -35-5n=-7(n+3) | | 27+-9h=-36 | | -(x+12)=-12 | | 10=2(z+2) | | 2-q/2=3 | | –9d=–8d+4 | | 3k+7=8k-3 | | 6(w+4)=78 | | -6k-5(3k-6)=-138 | | -(j+-6)=18 | | 0=-4(u-18) | | 2d—6=8 | | f/3+ 16.31=19.55 | | 1=j-7/2 | | f3+ 16.31=19.55 | | 11-2(2x+3)=29 | | -45=-65+x | | -2(s-16)=12 | | 2v+7-4v-12=11 | | 3-8k=-61 | | 5+–3r=2 | | -7(7x-1)=301 | | 5-f/2=2 | | -8(6x+5)-4x=116 | | w-2/3=2 | | 5y+5=7y−9° | | 7=v/3+4 | | 5y+5=7y−9)° | | 5+r/3=3 | | 6x-1=11x-47 |